Ubiquitin-Specific Protease 4 Is an Endogenous Negative Regulator of Pathological Cardiac Hypertrophy.
نویسندگان
چکیده
Dysregulation of the ubiquitin proteasome system components ubiquitin ligases and proteasome plays an important role in the pathogenesis of cardiac hypertrophy. However, little is known about the role of another ubiquitin proteasome system component, the deubiquitinating enzymes, in cardiac hypertrophy. Here, we revealed a crucial role of ubiquitin specific protease 4 (USP4), a deubiquitinating enzyme prominently expressed in the heart, in attenuating pathological cardiac hypertrophy and dysfunction. USP4 levels were consistently decreased in human failing hearts and in murine hypertrophied hearts. Adenovirus-mediated gain- and loss-of-function approaches indicated that deficiency of endogenous USP4 promoted myocyte hypertrophy induced by angiotensin II in vitro, whereas restoration of USP4 significantly attenuated the prohypertrophic effect of angiotensin II. To corroborate the role of USP4 in vivo, we generated USP4 global knockout mice and mice with cardiac-specific overexpression of USP4. Consistent with the in vitro study, USP4 depletion exacerbated the hypertrophic phenotype and cardiac dysfunction in mice subjected to pressure overload, whereas USP4 transgenic mice presented ameliorated pathological cardiac hypertrophy compared with their control littermates. Molecular analysis revealed that USP4 deficiency augmented the activation of the transforming growth factor β-activated kinase 1 (TAK1)-(JNK1/2)/P38 signaling in response to hypertrophic stress, and blockage of TAK1 activation abolished the pathological effects of USP4 deficiency in vivo. These findings provide the first evidence for the involvement of USP4 in cardiac hypertrophy, and shed light on the therapeutic potential of targeting USP4 in the treatment of cardiac hypertrophy.
منابع مشابه
The effect of resistance training on the expression of cardiac muscle growth regulator messenger genes in obese male rats
Background: Obesity is associated with cardiovascular disease, followed by pathological cardiac hypertrophy. However, physical activity (resistance training) plays a role in modulating some of the intracellular messenger pathways associated with the regulation of pathologic hypertrophy. The aim of this study was to investigate The effect of resistance training on the expression of cardiac muscl...
متن کاملNovel Protective Role for Ubiquitin-Specific Protease 18 in Pathological Cardiac Remodeling.
Ubiquitin-specific protease 18 (USP18), a USP family member, is involved in antiviral activity and cancer inhibition. Although USP18 is expressed in heart, the role of USP18 in the heart and in cardiac diseases remains unknown. Here, we show that USP18 expression is elevated in both human dilated hearts and hypertrophic murine models. Cardiomyocyte-specific overexpression of USP18 in mice signi...
متن کاملPositive Role for a Negative Calcineurin Regulator in Cardiac Hypertrophy.
Calcineurin is protein phosphatase with characteristic calciumand calmodulin-dependent activation through its regulatory subunits. Activated calcineurin dephosphorylates downstream transcription factor nuclear factor of activated T cells (NFAT), which leads to its nuclear translocation and transcriptional activation. Calcineurin-NFAT signaling axis is initially discovered as an essential pathwa...
متن کاملSmad3 Couples Pak1 With the Antihypertrophic Pathway Through the E3 Ubiquitin Ligase, Fbxo32.
Pathological cardiac hypertrophy is regarded as a critical intermediate step toward the development of heart failure. Many signal transduction cascades are demonstrated to dictate the induction and progression of pathological hypertrophy; however, our understanding in regulatory mechanisms responsible for the suppression of hypertrophy remains limited. In this study, we showed that exacerbated ...
متن کاملMuscle-specific RING finger 1 negatively regulates pathological cardiac hypertrophy through downregulation of calcineurin A.
BACKGROUND Muscle-specific RING finger protein-1 (MuRF1) is an E3 ligase that inhibits cardiac hypertrophy. However, how MuRF1 regulates cardiac hypertrophy and function during pressure overload (PO) remains poorly understood. We investigated the role of endogenous MuRF1 in regulating cardiac hypertrophy in response to PO in vivo. METHODS AND RESULTS Transverse aortic constriction (TAC) for 4...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Hypertension
دوره 67 6 شماره
صفحات -
تاریخ انتشار 2016